
Background Subtraction



Background Subtraction

• Given an image (mostly likely to be a video frame), we want to identify the 
foreground objects in that image!

Motivation

• In most cases, objects are of interest, not the scene.

• Makes our life easier: less processing costs, and less room for error



Widely Used!

● Traffic monitoring (counting vehicles, detecting & tracking vehicles),

●  Human action recognition (run, walk, jump, squat, . . .),

●  Human-computer interaction (“human interface”),

● Object tracking (watched tennis lately?!?),

● And in many other cool applications of computer vision such as digital 
forensics.



Requirements

● A reliable and robust background subtraction algorithm 
should handle:

– Sudden or gradual illumination changes,

– Long-term scene changes (a car is parked for a month).

– high frequency, repetitive motion in the background (such as tree 
leaves, flags, waves, . . .)



Requirements
● ...continues

– Secondary illumination effects (e.g. shadows cast by foreground objects)



Simple Approach

1. Estimate the background for time t.

2. Subtract the estimated background from the input frame.

3. Apply a threshold T to the absolute difference to get the 
foreground mask.

But, how can we estimate the background?

Image at time t Background at time t

-



Frame Differencing

● Background is estimated to be the previous frame.

● Background subtraction equation then becomes:

● Depending on the object structure, speed, frame rate and global 
threshold, this approach may or may not be useful (usually not).

-



Frame Differencing
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T=100
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Mean Filter

● In this case the background is the mean of the previous n frames:

Estimated background Estimated foreground

n=10



Mean Filter

Estimated background Estimated foreground
n=20

Estimated background Estimated foreground
n=50



Median Filter

●  Assuming that the background is more likely to appear in a 
scene, we can use the median of the previous n frames as the 
background model:

Estimated background Estimated foreground

n=10



Median Filter

Estimated background Estimated foreground
n=20

Estimated background Estimated foreground
n=50



Advantages vs. Shortcomings

● Advantages:

–  Extremely easy to implement and use!

– All pretty fast.

– Corresponding background models are not constant, they change 
over time.

● Disadvantages:

– Accuracy of frame differencing depends on object speed and frame 
rate!

– Mean and median background models have relatively high memory 
requirements.
● In case of the mean background model, this can be handled by a 

running average



Advantages vs. Shortcomings

●  There is another major problem with these simple approaches:

1.There is one global threshold, Th, for all pixels in the image.

2. And even a bigger problem:
this threshold is not a function of t.

● So, these approaches will not give good results in the following 
conditions:

– if the background is bimodal,

– if the scene contains many, slowly moving objects (mean & median),

– if the objects are fast and frame rate is slow (frame differencing),

– and if general lighting conditions in the scene change with time!



Early Approaches



Gaussian Model

● C. Stauffer and W.E.L. Grimson “Adaptive Background Mixture Models 
for Real-Time Tracking”

● Model the values of a particular pixel  as a mixture of adaptive 
Gaussians.

– Why mixture? Multiple surfaces appear in a pixel.

– Why adaptive? Lighting conditions change.

● At each iteration Gaussians are evaluated using a simple heuristic to 
determine which ones are mostly likely to correspond to the 
background.

● Pixels that do not match with the “background Gaussians” are classified 
as foreground.

● Foreground pixels are grouped using 2D connected component analysis.



Online Mixture Model

●  At any time t, what is known about a particular pixel (x0 , y0 ) is 
its history:

● This history is modeled by a mixture of K Gaussian distributions:



Online Mixture Model



Model Adaptation

● An on-line K-means approximation is used to update the Gaussians.

● If a new pixel value, Xt+1 , can be matched to one of the existing Gaussians 

(within 2.5σ), that Gaussian’s μi,t+1 and σ2
i,t+1 are updated as follows:

with

●  Prior weights of all Gaussians are adjusted as follows:

● Where Mi,t+1=1 for the matching Gaussian, 0 for all the others



Model Adaptation

● If Xt+1 do not match to any of the K existing Gaussians, the least 
probably distribution is replaced with a new one.

– Warning!!! “Least probably” in the ω/σ sense (will explain in a 
second)

– New distribution has μt+1 = Xt+1, a high variance and a low prior 
weight.



Background Model Estimation

● Heuristic: the Gaussians with the most supporting evidence and 
least variance should correspond to the background (Why?).

● The Gaussians are ordered by the value of ω/σ (high support & 
less variance will give a high value).

● Then simply the first B distributions are chosen as the 
background model:

where T is minimum portion of the image which is expected to 
be background.



Background Model Estimation

● After background model estimation red distributions become the 
background model and black distributions are considered to be 
foreground.



Advantages vs. Shortcomings

● Advantages:

– A different “threshold” is selected for each pixel.

– These pixel-wise “thresholds” are adapting by time.

– Objects are allowed to become part of the background without 
destroying the existing background model.

– Provides fast recovery.

● Disadvantages:

– Cannot deal with sudden, drastic lighting changes!

– Initializing the Gaussians is important (median filtering).

– There are relatively many parameters, and they should be selected 
intelligently.



Post Processing

● Erosion and dilation



 Removal of shadows 

● Shadows change luminance but not chromaticity



Grouping Pixels into Blobs

●  median filter to remove noisy pixels

●  connected components (with gap spanning)

●  Size filter to remove small regions



Blob Merge and Split



Data Association

● Determining the correspondence of blobs across frames is based 
on feature similarity between blobs.

● Commonly used features: location , size / shape, velocity, 
appearance

● For example: location, size and shape similarity can be measured 
based on bounding box overlap:



Data Association (Velocity)

● It is common to assume that objects move with constant velocity



Data Association (Appearance)



Appearance via Color Histograms



Appearance via Reduced Histograms

● Histogram information can be much much smaller if we are 
willing to accept a loss in color resolvability.



Association after Merge and Split
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